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Natural or “Buoyant” or “Free” convection is a very important mechanism that is operative in a 
variety of environments from cooling electronic circuit boards in computers to causing large 
scale circulation in the atmosphere as well as in lakes and oceans that influences the weather.   It 
is caused by the action of density gradients in conjunction with a gravitational field.  This is a 
brief introduction that will help you understand the qualitative features of a variety of situations 
you might encounter.   
 
There are two basic scenarios in the context of natural convection.  In one, a density gradient 
exists in a fluid in a direction that is parallel to the gravity vector or opposite to it.  Such 
situations can lead to “stable” or “unstable” density stratification of the fluid.  In a stable 
stratification, less dense fluid is at the top and more dense fluid at the bottom.  In the absence of 
other effects, convection will be absent, and we can treat the heat transfer problem as one of 
conduction.  In an unstable stratification, in which less dense fluid is at the bottom, and more 
dense fluid at the top, provided the density gradient is sufficiently large, convection will start 
spontaneously and significant mixing of the fluid will occur. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
You should note that density gradients can arise not only from temperature gradients, but also 
from composition gradients even in an isothermal system.  Here, we restrict our discussion to the 
case when temperature gradients are the source of the density gradients. 
 
The more common situation that we encounter in heat transfer is one in which there is a density 
gradient perpendicular to the gravity vector.   Consider a burning candle.  The air next to the hot 
candle flame is hot, whereas the air laterally farther from it is relatively cooler.  This will set up a 
natural convection flow around the candle, in which the cool surrounding air approaches the 
surface of the candle, rises, and flows in a hot plume above the flame.  It is this flow that causes 
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the visible flame to take the shape it does.  In the absence of gravity, a candle flame would be 
spherical.   
 
Another example is the flow of air at the tip of a lit cigarette; in this case, the smoke from the 
cigarette actually traces that flow for us.  In a common technique used for home heating, the 
baseboard heater consists of a tube through which hot water flows, and the heater is placed close 
to the floor.  The tube is outfitted with fins to provide additional heat transfer surface.  The 
neighboring air is heated, and the hot air rises, with cooler air moving in toward the baseboard at 
floor level.  This natural convection circulation set up by the hot baseboard provides a simple 
mixing mechanism for the air in the room and helps us maintain a relatively uniform temperature 
everywhere.  Clearly, the convection helps the heat transfer process here. 
 
Natural Convection adjacent to a heated vertical surface 
 
Consider a hot vertical surface present in a fluid.  The surface is maintained at a temperature sT , 
which is larger than the ambient  temperature in the fluid eT .  Here is a sketch of the momentum 
boundary layer along the plate. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As shown in the sketch, the cold fluid rises along the plate surface, becoming heated in the 
process, and the momentum boundary layer grows in thickness with distance along the plate.  A 
sample velocity profile in the momentum boundary layer is shown.  Note that in this type of 
boundary layer, the velocity must be zero not only at the solid surface, but also at the edge of the 
boundary layer.  Because the profile was sketched free-hand in PowerPoint, I am unable to show 
the smooth approach to zero velocity with a zero slope at the edge of the boundary layer 
properly, but that is how the correct velocity profile would appear.  Compare this velocity profile 
with that in a momentum boundary layer that forms on a flat plate when fluid approaches it with 
a uniform velocity U∞ .  You should try to make a sketch of the thermal boundary layer on the 
same plate when the fluid is air, for example, and also when it is a viscous liquid with a Prandtl 
number that is large compared with unity. 
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Now, let us consider a typical window in a home on a winter day when the outside air is at 
10 F  and the inside of the room is at a balmy 68 F .  What will the momentum boundary 
layers on either side of the window look like?  Try to sketch them yourself before looking at the 
sketch.   The arrows in the sketch show the direction of air flow at the location where the air 
enters the boundary layer on the inside as well as on the outside, and the direction of air flow 
within the boundary layer.  There is a slight transverse flow in each boundary layer, but on the 
scale of the picture, it is difficult to use the arrows to show it; therefore, I have drawn the flow in 
the boundary layers as being vertically downward or upward as appropriate. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
What will the thermal boundary layers look like?  Try sketching them.  Also, you should make a 
sketch of the temperature distribution along the interior and exterior surfaces of the window from 
the bottom to the top.  Will this permit you to explain why ice forms in a certain pattern on the 
outside surface of a window on really cold nights? 
 
The Grashof and Rayleigh Numbers 
 
In natural convection situations, an important dimensionless group is the Grashof number.  To 
provide some physical significance to this group prior to defining it, we use a simple order of 
magnitude estimate of the natural convection velocity in the above examples.  When fluid with a 

density ρ  moves at a velocity V , the kinetic energy per unit volume can be written as 21
2

Vρ .  

This must come from some other form of energy, namely, potential energy lost by the fluid.  
Over a vertical distance L , the difference in potential energy between the less dense fluid in the 
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boundary layer and the more dense fluid outside it can be approximately expressed as g Lρ∆ , 
where g  is the magnitude of the acceleration due to gravity, and ρ∆  is a characteristic density 
difference between the boundary layer fluid and that far away.  We can equate these two order of 
magnitude estimates, and neglect the factor of 1/ 2 , because this is only an order of magnitude 
analysis.   
 

2V g Lρ ρ≈ ∆  
 
Therefore, a typical order of magnitude of the velocity arising from natural convection is 
 

V g Lρ
ρ
∆

≈  

 
Let us define a Reynolds number for the flowing fluid using this order of magnitude estimate. 
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= .  This is a dimensionless group that occurs often in natural convection 

problems, and is given the name Grashof Number, abbreviated as Gr. 
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The coefficient of volumetric expansion of a fluid β  is defined as 
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where V  is the specific volume, T  is the 

temperature of the fluid and P  is its pressure.  Therefore, we can write 
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 where we have used a minus sign in relating ρ∆  to T∆  because 

both are defined as being positive, and as temperature increases, density decreases. 
 
We can finally rewrite the definition of the Grashof number as follows. 
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The Grashof number is related to the Reynolds number, and in heat transfer, the Prandtl number 
plays a significant role.  Therefore, in natural convection heat transfer, we encounter another 
dimensionless group, called the Rayleigh number, abbreviated by Ra , which is the product of 
the Grashof and Prandtl numbers. 
 

3

Pr T g LRa Gr β
να
∆

= × =  

 
Here, α  is the thermal diffusivity of the fluid.  The Nusselt number in natural convection heat 
transfer situations is typically a function of the Rayleigh number, the Prandtl number, and aspect 
ratio parameters. 
 
For a vertical heated plate of length L , Mills (1) suggests using the following correlation for the 

average Nusselt Number, average
average

h L
Nu

k
=  (where k  is the thermal conductivity of the fluid). 

 
( )1/ 4 90.68 0.670 , 10averageNu Ra Ra= + Ψ ≤  

 

( ) ( )1/121/ 4 8 9 120.68 0.670 1 1.6 10 , 10 10averageNu Ra Ra Ra−= + Ψ + × Ψ ≤ <  
 
In these equations Ψ is a function of the Prandtl number, defined as follows. 
 

16/99 /160.4921
Pr

  Ψ = +  
   

 

 
The reason for changing from one correlation to another when the Rayleigh number exceeds 910  
is that the natural convection boundary layer undergoes transition to turbulence around that value 
of the Rayleigh number.  Mills points out that at 910Ra =  the above two correlations do not 
coincide in their predictions.  This is fine, because that value of the Rayleigh number is an 
arbitrary cross-over point from one correlation to the other.  It is fine to use the second 
(turbulent) correlation for 910Ra = . 
 
As usual, physical properties should be evaluated at the arithmetic average temperature between 
the plate and the ambient fluid. 
 
Other natural convection flows 
 
Mills recommends suitable correlations for natural convection flow over a horizontal heated 
cylinder and a heated sphere.   For other objects of arbitrary shape, he recommends a correlation 
due to Lienhard. 
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1/ 40.52averageNu Ra=  
 
Here the length L to be used in both the Nusselt and Rayleigh numbers is the length of the 
boundary layer; for example, L Rπ=  for a cylinder or sphere of radius R .  But for those two 
geometries it is better to use the specific correlations given in the textbook by Mills.  Mills also 
provides some useful correlations for natural convection in enclosures. 
 
Windows used in homes are termed “single-pane” or “thermopane.”  A single pane window is a 
glass plate that separates the inside of a room from the outside.  Heat transfer between the indoor 
air and the air outside occurs by conduction through the glass, and the heat transfer rate can be 
large.  Therefore, the “thermopane” window was designed to reduce the heat loss by using two 
glass plates with a small gap between them.  Let us assume the gap is filled with air, and for the 
sake of simplicity, that the plates are wide and long, and are each maintained at a uniform 
temperature.  The sketch given below is taken from a textbook  by Bird et al. (2); it depicts the 
temperature distribution between the two plates and the resulting natural convection velocity 
distribution.   
 

 
 
Note that even though there is convection in the air, it does not influence the heat flux through 
the air gap, because the temperature distribution still remains linear at this order of 
approximation.  The air gap significantly increases the thermal resistance of the window and 
reduces the heat flux between the outside air and that inside the room.  In modern thermopane 
windows, the gap between the two plates is evacuated, so that the heat transfer rate is further 
reduced, at least initially when the window is new.  Over time, air leaks through the seals into the 
gap, increasing heat loss in the winter and heat gain in the summer.  It is worth noting that as the 
gap width is increased, the velocity in the gap increases proportionally to the cube of the gap 
width. At larger gap widths, the temperature profile is no longer linear, and the convection 
actually increases the heat flux through the gap over that occurring due to pure conduction.  This 
is the reason for the choice of a small width of the order of 1-2 mm for the air gap in thermopane 
windows. 
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If you wish to learn more about natural convection heat transfer, a good reference is the book by 
Gebhart et al. (3). 
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