EE/ME/AE324:
Dynamical Systems

Chapter 8: Transfer Function
Analysis



The System Transfer Function
o Consider the system described by the nth-order I/O eqn.:

yYWWaa YWV ray=b u" 4 kb
* Taking the Laplace transform of the system eqn. with ICs =0 :
(S” +a, s"" +--°+a0)Y(S) = (bms’" +---+bO)U(S)
* The Transfer Function (TF) 1s defined as:
a Y(s) _ bs"+---+b,
UG,
e Factoring the TF yields:

H(s)

n n—1
s +a, s +--+a,

H(S):K (S_Zl)(S_ZZ)”.(S_Zm)
_(S_p1)(5_p2)”'(s_pn)_
where p; and z; are the system poles and zeros, respectively




The System Transfer Function
* If the PFE of the TF has the form:

H(s) = 4 4 A
(s—p) (—p,) (s—p,)

where A4, are the residues associated with the system poles,

the zero-input system response will have the form:
V(1) = Kleplt + Kzepzt 4ot Knep”t

where the e”’ terms are called the system modes

o The stability of the system response 1s based on the p.:
= Stable if R{ p, | < 0 for all p,

= Unstable if R{ p,} > 0 for any p,
— Marginally stable (oscillatory) if R{ p,} = 0 for distinct p,



Second Order Responses
* Assume a 2nd order TF of the form

a Y(s) _ Gpe®,” _ Gpe®,”

H ()

U(s) s*+2w,s+aw,°  Als)
where 0 < £ <1 1s the damping ratio (unitless), G,

1s the DC gain and @, 1s the natural frequency [rad/sec]

*The characteristic poly. A (S) can be factored as

A(S):(SJrga)n+ja)n\/1—/;2)(s+§a)n—ja)n\/l—gz)

1 |
:(S+—+ja)dj(s+——ja)dj
T T




Second Order Responses
- This implies that the roots (poles) of A(s) are:

1
. o) .
S;, =—CW, i]wn\/l—§ = —;i]a)d
A 1. .
where 7 = éf— 1s the time constant [sec] and
a)l’l

w, =0 \/ 1—-¢7 is the damped frequency [rad/sec]

n

« It also implies ‘SLZ‘ = \/(;2@”2 +w’ (1 — 52) =
1s the distance from the complex poles to the origin

of the s-plane, assuming ‘4’ ‘ <1



Second Order Step Responses
* We now visualize second order system responses

to unit step mputs for G, . =

* Note, Y(s)=H(s)-U(s) =

#y(t):GD(,“

where ¢ = tan™'

] —

n

w =1 as { varies

2
GDC a)n

S(S2 +20w, s + a)nz)

( )
: 2 (/T)sm(a)dt ?) |,
W1-¢7 ]
_\/1_5 for 0 < <1
\ 6 Y,




Second Order Step Responses
* In the plots that follow for ‘g” ‘ <I:

( _ )
%Overshoot (&) =100-exp d 2
V1-¢7
— %0S(0) =100%, %O0S(.5)=16.3%,
%0S(.707) = 4.3%, %0S(1) = 0%

 Second_Order_Response.m on the class web site
will be used to generate pole-zero plots and step
responses



Hmaginary Axis

Transfer function:

1 = ¢ =0, marginally stable (undamped) sys.
"""" 0 =cos™ () =90, valid only for || <1

s 2 + 1
Pole-Zero Map Undamped Step Response (Simple O=cillator)
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Transfer function:

1 = ¢ =0.5, under-damped (stable) sys.

"2 + 3 + 1 9:C05_1(5)2600

Pole-Zero Map Under-Damped Step Rezponse
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Transfer function: — £ =(.707,

under-damped (stable) sys.

"2 + 1.414 5 + 1 0 =cos™ ({)=45

Pole-Zero Map Under-Damped Step Responge
E T T T | T T 1 E T

1.8

Imaginary Axis
Amplitude
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Imaginary Axis

Transfer function:

1 — ¢ =1, critically damped (stable)
6=cos ({)=0

s"2 + 2 8 + 1
Pole-Zero Map

E 1 1 1 |

Amplitude

Cricically-Damped Step Responze
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Imaginary Axis

Transfer function:

! — £ =1.25,

A 42 B g o4 1 over-damped (stable) sys.

Fole-Zero Map Over-Damped Step Responzse
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Amplitude
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The Frequency Response
* We now consider the steady-state response of a

general system to a sinusoidal input of the form:

@

u(t) =sin(wt) =U(s) =

o

* The system output can be expressed using its TF as:

Y(s)=H(s)-U(s)=H(s)

(S + ja))(s — ja))

= H (s)




* Performing PFE, we have: Y (s) = +

The Frequency Response
C C

%k

S—Jjo S+ o

terms associated with the stable poles of H (S):|

he residue C can be evaluated as shown 1n

hapter 7, e.g.: C =(s— jo) Y(S)‘

S=jw
= H(s)| —— = H(.]a))
S+ jo j2




The Frequency Response
» Define H (jw)= H(a))‘éH(a)) =M(a))€je(w),

where M (a)) and 6’(a)) are real functions representing

the magnitude and phase angle of H (jw) respectively;

_ ~j0(w)
then C” =—H( ]a)) :_M(a))e
J2 J2

* Since the poles of H(s) are assumed stable, the

steady-state response of these poles 1s zero implying

M(a)) /@) M(a)) e /92)
YSS(S): ) ) - )
]Z(S—]a)) ]2(S+]a))




The Frequency Response

jo(w) —j6(w) i
S P ]| BUA Sy
j2 _(S—]a)) (S+]a))_

Sy
e](a)H (a))j

- e_ j(a)t+6’(a))j

j2

Vs (1) = M(a))

= M(a))sin(a)t + 6’(&)))

» H(jw)=M (w)£6(w) is known as the system's
frequency response function (or frequency response)



The Frequency Response
* Using a similar analysis, 1t can be shown that

inputs of the form: u(¢) = Asin(wt +¢) and
Acos(wt + ¢)
produce steady-state outputs of the form:

Vss (1) = AM (@)sin(wt + ¢+ 6(®)) and
AM (o) cos(a)t+¢+ 6’((0)), respectively



The Frequency Response

* This implies that what comes out of a linear system
1s simply a scaled and shifted verion of what is input;

=Ifu(t)= A, + Y A, cos(mynt +¢,),
n=1

= DC Component + Fundamental frequency @, and

Higher order harmonics

then
Vs () = A,M (0)+ iAnM (won)cos(aynt + ¢, + 6 (wyn))
n=l

* This 1s reason why Fourer Series are commonly used

to analyze systems and signals (not cover 1n this class)!



A Frequency Response Example
* Find y(¢#) when the stable system defined by

4s + 8

H(s)=
(5) sT+25+5

1s driven by the 1nput
u(t) = 5sin(4t + g)

* Evaluating the TF at the input frequency yields

| 4s+38
s=jo=j4 |s*+25+5

M ()= \H(s)\

s=jw=j4
=1.3152 >>abs((4* j*4+8)/((j*4)" +2* j*4+5))



A Frequency Response Example

and

6)(0)) — 4H(S)‘S:ja):j4 - 4

=—1.4056 [rad]

>> angle((4* j*4+8)/((j*4)> +2%* j*4+5))

4s + 8

S+ 2545

/4

= Y (t) = 5M(w)sin(4t+—+6’

3
= 6.576sin (47 —0.3585)

(@)

s=jw=j4



A Frequency Response Example
* We can predict how this system will pass any input

frequency by plotting M (@) and 6(w) using the
Matlab bode command as shown:
>>NUM=[4 8]:DEN=[1 2 5]:SYS=tfiNUM,DEN):bode(SYS)

* Note, a Bode plot has a log scale on the frequency
ax1is and a magnitude expressed 1n dB, 1.e.,

X [dB]=20log,, X
—=1~0dB, 0.707~-3dB, 1.414~+3 dB



magnitude (dE)

Fhase (deq)

Bode Diagram

10

=30

/The Magnitude of the
Frequency Response
at w =4 [rad/s] 1s 2.3 [dB]
~1.3 as shown from TF

The Magnitude of the Frequency Response

at o =0 [rad/s] is 4.1 [dB] ~ 10(4'1/20) =1.6

Compare this to the steady-state value of the

system's unit step response (see next slide)

45

The Phase Angle of the
Frequency Response

_45 |

B0k

at w =4 [rad/s] 1s -80° -
or -1.406 [rad], as indicated
by from TF

10 10' 10
Frequency (rad/zec)

[ o]



Step Response

System: sy=

Time (2ec). 5.99
Amplitude: 1.6

By FVT from Chapter 7:

Yuss = }i_g.}yU(t) = P_{%SYU(S)
H ()

Since Y, (s) = :
S

4s + 8 16 i

+25+5
>>NUM=[4 8];DEN=[1 2 5];SYS=tf(NUM,DEN);step(SYS)

= Vuss = EI_IBH(S) =lim

s—0 S2

1 2 3 = o 6
Time (2ec)



Amplitude

4 ] | | | | | | | | |
» Remember, as shown in Chapter 7:
'h dy,, (t
3| h(t)zEl{H(S)}: Yy (1) |
dt
sar i.e., a system's impulse response
2t 1s equal to the time derivative of -
15} its unit step response! .
oL \ >>NUM=[4 8];:DEN=[1 2 5] _
'\ e—— >>SYS=tf(NUM,DEN);impulse(SYS)
0.5 >> H=[diff(Y)./diff(T):0];plot(T,H,'r) -
ol S o s ges SO _
-0.5F -
-1 ] ] ] ] ] ] ] ] ]
0 0.5 1 1.5 2 2.3 3 3.5 2 &z

Impulze Responze

(|



Fourier Series Example (Not Tested)
* Assume the prior system H (s) 1s excited by a

square wave of period 7, defined for all integer p as:

(—1, for (p—%)]}) St<(p+%)7})
\ 1, for (p+%)7;) St<(p+%)To

* The Fourier Series (FS) approx. of U,(¢) is given by:

.~ 4 . (nrx 2
Uy ()= lim ) —sin - cos(nw,t) where o, = A)

N—>w = nit

U,(t)=+

» Approximate the response of the prior system to U (¢)

using the first twenty terms of its FS (see following graphs)



Amplitude [%]

Amplitude [\

Fourier Series Example (Not Tested)

Square Wave and Truncated Fourier Series

2 T T T T T T
1 B :: . “n' .1.."“:“:: I
[] - -
- ----n-l--;-n—ﬂ-"u— :__1,‘ -..
_2 1 1 1 1 I 1
0 1 2 3 4 ] B
Time [s]

System Output for Square Wave and Truncated Fourier Series
4 T T

Amplitude [dE]

FPhase [deg]

Bode Magnitude Plot for System

10 .
0
A0k 4
20k i
The red lines are frequency components
associated with the FS approx. of U ()
10° 10° 10 10°
Frequency [rad/s]
Bode Phase Plot for System
0 = '
20k i
40} -
60| 4
B0t \ -
\h'“-uq_
> L |I.:I R | - 11 .
10 10 10 10

Frequency [rad/s]



The Impedance Concept
« Impedance 1s a frequency domain concept

that can be expressed for various types of

systems as the TF (or ratio) of flow to force

* For electrical systems, impedance 1s defined:

A E(s)

SRR
—>Z,(s)=R, Z,(s)=Ls, ZC(S)zL
Cs

* Impedances can be treated as a generalized
resistances, even though they are functions of s



Electrical Impedance Ex.8.22: RC Circuit
« Replacing circuit elements with their equivalent

impedances permits application of techniques used

for pure resistive circuits, e.g., voltage-divider rule
sL R]

L R,
AA A -9
+ + + +
C’,‘(f) C a;: R2 g €, ﬁ E‘;(S) ';"’l“'”C" p R2 ? E”(S)

T T

1

* Combining pa-rallel impedances at £ (s): -

b R
Z,(s)= S = =
? R, + %S 1+ R,Cs




Electrical Impedance Ex.8.22: RC Circuit
« Using voltage divider at £ _(s):

E ()= | 2

_LS-I—R1 +Zz(s)_

1c)

£, (s)

$ +(L +RR,C

LCRz)S

+

(&+&

LCRz)

NI L+RRC o 4 R +R o —
T LCR | ™° LCR )™

R
= Ife. = AU(2), e :(/ )A
l () 0SS R1+R2

E . (s)

l

(. c)e



Electrical Impedance Ex.8.24: Op-Amp Circuit

. L E (s
* Find the TF for the op-amp circuit, H(s) = ()
Q"g‘t <4 5&’&4_&_&%0 E(S)
= %} . /ﬁ/\//
2 Z4(s) = e
—\ 2 ) \\‘e} \jc, .
_ ﬂ?% VP
Zy(s) —— Zys) H ~Eg)
EC(S) “L70 . o
+ \| ? > E (s) +
E,'(S) () EC'& o é‘/‘\ 4(5.) Q/\r

T = 24 \L“I» ’\ZVT— b}"m
| R,% I3 2

Y@A“ﬁ gA’ | -— "’éﬂ +El.13:
\I‘Mﬁ/ Eo KH\O\L "@4(22“2.)];:0




Electrical Impedance Ex.8.24: Op-Amp Circuit

. R +R
o Letting K £ 12
Rl

the voltage-divider rule to obtain:

R 1
—E,(s)=—E,(s)
R +R, K

, we can repeatedly apply

E,(s)=

_ Z, (s5)
b= oz

Due to the op-amp's virtual short, £ ,(s) = £, (s)
Z,(5)+Z,(5)
KZ,(s)

= Eq(s) = E, (s)



Electrical Impedance Ex.8.24: Op-Amp Circuit
* KCL at Node C yields:

[Ec(s)—E(s)]+

Z |

+ 1 E.(s)=0
_Zz(S)+Z4(S)_

Z (S)

. . . » 1 1 1c] E
e Eliminating E. (s) and simplifying yields £(s) - EO (( S))
(s

KZ . (s)Z,(s)

N Z()Z,(s)+(1=K) Z,(5)Z,()+ Z,(s)| Z,(s) + Z,(s) + Z,(5)]



Sallen-Key Low-pass Filter
When Z,(s) =R, Z,(s) =Ry, Z;(s)=C,, Z,(s)=Cy,

the circuit 1s referred to as a Sallen-Key Low-pass filter

Ca
K
K
H —————————————————————————————————————————
+ P £
_ +
1 R
—T T
v, ;! v
0
- R _




Sallen-Key Low-pass Filters

R

l

, R, +R
IftR, =R, =R, C,=C,=C, withK =

K
A V,(s) _ (RC)2

Vi) , (3-K 1Y
s°+ S+| ——
RC RC

the natural frequnecy of this low-pass filter can be

H(s)

tuned by selecting RC and damping by adjusting K



Frequency Response of S-K Low-pass Filter

fagnitude (dB)

Fhase (deq)

Bode Diagram

_I—_I—_—I——I___I___Ih T
-
-0 Svatem: 575 )
— _ Frequency (rad/zec). 1.01
-20 _FOI‘ K=RC=1 Magnitude (dB): -5.18 -
| .
=r= H(s)=—; , a critically damped -
ST +2s+1
40 . .
system (as shown previously) with { =w, =1
_ED 1 1 1 1 1 1 1 I | 1 1 1 1 1 1
0 - : ——

80| -
135} -
-180 k& LI - - R

10° 10°
Frequency (radizec)



Mechanical Impedance
« For mechanical systems, impedance 1s defined:

a F(s)

“O=)
= Zy(s)=B, Z,,(s)=Ms, ZK(S)ZE
S

* The mechanical impedance 1s a function of the
frequency of the applied force and can vary greatly
over frequency, e.g., for a pendulum (see pg. 116):

|
A F(S) B (&Lz)s GDca)nZS

Z(5)

w(s) _S2+(%4L2)S+(%) :Sz+2§a)ns+a)nz



Mechanical Impedance

* At resonant (natural) frequencies, the mechanical

impedance will be lower meaning less force/power

1s needed to cause a structure to move at a given

velocity

» The simplest example of this 1s when a child pushes

another on a swing; for the greatest swing amplitude

t]

e frequency of the pushes must be more-or-less at

t]

e resonant (or natural) frequency of the system

* Note, o, = w/% for the simple pendulum system



mMagnilude (dE]

Fhase (dedq)

Bode Diagram

20 ‘N
I d f] Sy=etem: SY'S
g} Impedance (freq. response) Frequency (radisec): 1 _
g | of the pendulum system SIS A e |
gL with g, M, B, L setto 10 )
el = o, =1 [rad/s] |
70k -
—E-D ] ] ] [ T ] ]
90 =
Note, the phase response
a5 b -
1s not relevant to this
I application -
45 | -
_Ei||:| - ] 1 1 L1 1 ||k-"'
10" 10"

Frequency (rad/zec)

10



Zero-1nput
response

f

Jestions?

Zero-state
response to
any input

/0 DEq |

. |

yult)

1 f1(1)

Pole-zero
plot
!

T for *
Ist-order sys; Form of
{; Wy, for ) ()

2nd-order sys. i

Y When
u()=A

Y When
u(r) = B sin (wt + ¢)




