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•
The System Transfer Function

Consider the system described by the th-order I/O eqn.:n
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•
The System Transfer Function

If the PFE of the TF has the form:
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where  are the residues associated with the system poles,
the zero-input system response will have the form:
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Second Order Responses
•Assume a 2nd order TF of the form

( )
2 2

2 2

Assume a 2nd order TF of the form
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Second Order Responses
• ( )This implies that the roots (poles) of are:s∆• ( )
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Second Order Step Responses
•We now visualize second order system responsesWe now visualize second order system responses

to unit step inputs for 1 as  variesDC nG ω ζ= =
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Second Order Step Responses
• In the plots that follow for 1:ζ ≤•
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• Second_Order_Response.m on the class web site 
will be used to generate pole‐zero plots and step g p p p
responses



0, marginally stable (undamped) sys.ζ⇒ =
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0.5, under-damped (stable) sys.ζ⇒ =
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0.707,
under-damped (stable) sys
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1, critically damped (stable)ζ⇒ =
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The Frequency Response
• We now consider the steady state response of a• We now consider the steady-state response of a

general system to a sinusoidal input of the form:
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The Frequency Response
*C C• Performing PFE, we have: ( ) C CY s
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The Frequency Response
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The Frequency Response
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The Frequency Response
• Using a similar analysis it can be shown that• Using a similar analysis, it can be shown that

inputs of the form: ( ) sin( )   andu t A tω φ= +
                                        cos( )
produce steady-state outputs of the form:
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( ) ( )( )
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The Frequency Response
• This implies that what comes out of a linear system• This implies that what comes out of a linear system

is simply a scaled and shifted verion of what is input;
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to analyze systems and signals (not cover in this class)!



A Frequency Response Example
• Find ( ) when the stable system defined byy t• Find ( ) when the stable system defined by
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A Frequency Response Example
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A Frequency Response Example
• We can predict how this system will pass any input•

( ) ( )
We can predict how this system will pass any input
frequency by plotting  and  using theM ω θ ω

>>NUM [4 8];DEN [1 2 5];SYS tf(NUM DEN);bode(SYS)

bodMatlab  command as shown:e

•

>>NUM=[4 8];DEN=[1 2 5];SYS=tf(NUM,DEN);bode(SYS)

Note, a Bode plot has a log scale on the frequencyNote, a Bode plot has a log scale on the frequency
axis and a magnitude expressed in dB, i.e.,
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The Magnitude of the
Frequency Response

The Magnitude of the Frequency Response
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system's unit step response (see next slide)
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B FVT f Ch t 7
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By FVT from Chapter 7:
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>>NUM=[4 8];DEN=[1 2 5];SYS=tf(NUM DEN);step(SYS)
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>>NUM=[4 8];DEN=[1 2 5];SYS=tf(NUM,DEN);step(SYS)



Remember, as shown in Chapter 7:

{ }1 ( )( ) ( ) Udy th t H s
dt

−= =L

i.e., a system's impulse response
is equal to the time derivative ofq
its unit step response!
>>NUM=[4 8];DEN=[1 2 5];NUM [4 8];DEN [1 2 5];
>>SYS=tf(NUM,DEN);impulse(SYS)
>> H=[diff(Y)./diff(T);0];plot(T,H,'r:')



Fourier Series Example (Not Tested)
• Assume the prior system ( ) is excited by aH s
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using the first twenty terms of its FS (see following graphs)



Fourier Series Example (Not Tested)

The red lines are frequency components
associated with the FS approx of ( )SU tassociated with the FS approx. of ( )SU t



The Impedance Concept
• Impedance is a frequency domain concept• Impedance is a frequency domain concept

that can be expressed for various types of
systems as the TF (or ratio) of flow to force

F l t i l t i d i d fi d• For electrical systems, impedance is defined:
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Electrical Impedance Ex.8.22: RC Circuit
• Replacing circuit elements with their equivalent• Replacing circuit elements with their equivalent

impedances permits application of techniques used
for pure resistive circuits, e.g., voltage-divider rule
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• Combining parallel impedances at ( ) :E s
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Electrical Impedance Ex.8.22: RC Circuit
•Using voltage divider at ( ) :E s

2

Using voltage divider at ( ) :
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Electrical Impedance Ex.8.24: Op‐Amp Circuit
( )Fi d th TF f th i it ( ) oE sH• ( )Find the TF for the op-amp circuit, ( )
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Electrical Impedance Ex.8.24: Op‐Amp Circuit
1 2L i dl lR RK +�• 1 2
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Electrical Impedance Ex.8.24: Op‐Amp Circuit
• KCL at Node C yields:•
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KCL at Node C yields:
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Sallen‐Key Low‐pass Filter
When ( ) ( ) ( ) ( )Z s R Z s R Z s C Z s C= = = =1 2 3 4When ( ) ,  ( ) ,  ( ) ,  ( ) ,
the circuit is referred to as a Sallen-Key Low-pass filter

A B A BZ s R Z s R Z s C Z s C= = = =



Sallen‐Key Low‐pass Filters
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the natural frequnecy of this low-pass filter can be
tuned by selecting  and damping by adjusting  RC Ky g p g y j g



Frequency Response of S‐K Low‐pass Filter

For 1K RC= =

2

1( ) ,  a critically damped
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system (as shown previously) with 1nζ ω= =



Mechanical Impedance
• For mechanical systems, impedance is defined:For mechanical systems, impedance is defined:
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frequency of the applied force and can vary greatly
over frequency, e.g., for a pendulum (see pg. 116):
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Mechanical Impedance
• At resonant (natural) frequencies the mechanical• At resonant (natural) frequencies, the mechanical

impedance will be lower meaning less force/power
is needed to cause a structure to move at a given
velocity

•

velocity

The simplest example of this is when a child pushes
another on a swing; for the greatest swing amplitude
the frequency of the pushes must be more-or-less atthe frequency of the pushes must be more-or-less at
the resonant (or natural) frequency of the system

• Note,  for the simple pendulum systemn
g
Lω =



Impedance (freq. response)
of the pendulum system
with , , ,  set to 10g M B L

1 [rad/s]nω⇒ =

Note the phase responseNote, the phase response
is not relevant to this 
applicationapplication



Questions?


