CHARACTERIZATION OF THE QUASI LIQUID LAYER (QLL) OF ICE USING F-19 NMR

M. R. Hoffmann*, M. I. Guzmán, and A. J. Colussi
W. M. Keck Laboratories, California Institute of Technology, Pasadena, CA 91125

ABSTRACT

The marginal but selective encapsulation of ions by growing ice induces transient polarizations. Electroneutrality is ultimately restored via H⁺/OH⁻ interfacial migration producing fluid phases of altered acidity. The media in which solutes become confined upon freezing are, therefore, not only more concentrated but have different acidities than the precursor solutions. This largely unrecognized phenomenon should affect reaction rates and equilibria in frozen aqueous systems. We report, for the first time, measurements of the acidity of extensively frozen dilute solutions of various electrolytes based on the temperature dependence of the 19F chemical shifts of the 3-fluorobenzoic acid in situ probe. We find that acidity significantly increases or decreases upon freezing depending on the type of ions involved. In particular, NaCl, NaNO₂ and KNO₃ solutions become more basic, while NH₄OH or Na₂SO₄ solutions become more acidic, upon freezing. The environmental implications of these results are briefly analyzed.

KEYWORDS: ‘Quasi-Liquid-Layer;’ acidity; ‘Workman-Reynolds-Effect;’ Eutectic

INTRODUCTION

The onset of snow photochemistry strongly perturbs the composition of the boundary layer at high latitudes in early spring.¹,² Nitrogen oxides and, particularly, nitrous acid escape from the snowpack during the solar photolysis of the nitrate ion contaminant.³⁻⁶ These rapid losses are accompanied by a dark process that depletes nitrate for years after deposition.⁷,⁸ The smaller chloride deficits in ice cores dating from the last glacial maximum have been ascribed to the neutralization of normally acidic ice by enhanced dust levels.⁹ The pH of seawater has been observed to decrease upon freezing, leading to carbonate precipitation and carbon dioxide degassing.¹⁰ The pH of high alpine lakes was found to be directly correlated with ambient temperature.¹¹ The tantalizing possibility that such apparently dissimilar phenomena could have a common mechanism remains to be elucidated. A recent analysis of air-snow interactions and their effect on atmospheric chemistry revealed that the role of ionic species in the structure, composition and chemistry of ice/electrolyte interfaces remains poorly understood.²

The ubiquitous ice/water interface occurs in important chemical, biological, environmental, and atmospheric processes.¹²,¹³ The existence of a fluid interfacial layer at the air/pristine ice boundary (the “quasi-liquid layer (QLL)”) is just an example of the general phenomenon...
known as surface melting.14,15 When dealing with natural systems, it is more relevant, however, to consider the domain of fluidity of partially frozen dilute electrolyte solutions, as well as the composition of the ice (the solidus) and the remaining liquid (the liquidus) in the range of environmentally accessible temperatures.16,17

Snow and ice contain solutes of atmospheric or marine origin that are largely segregated into microscopic fluid films because, with few exceptions, ice is notoriously intolerant to impurities.18-22 Hence, during freezing, although most ions largely (> 99.9 %) remain in solution, some are selectively included as substitutional dopants into the growing ice phase depending on the rate of freezing.23,24 Thus, a transient freezing electric potential develops (superimposed to the intrinsic equilibrium potential of the ice-air interface)24-28 that can induce thermodynamically favorable,29-33 as well as unfavorable reactions.25,34,35

Freezing will halt when the fluid reaches the composition of the liquidus at the imposed temperature. The residual charge imbalance ultimately relaxes via H^+ and OH^- (the natural charge carriers of dielectric ice) migration across the ice/solution boundary. If anions (rather than cations) were preferentially rejected from ice during freezing, H^+_aq ($OH^-\text{aq}$) will penetrate into the solid to reestablish electroneutrality in all phases. As a result, the liquidus will become less (more) acidic than the initially unfrozen solution.36,37 The relative affinity of the different ions for ice can be inferred in principle from the sign of the freezing potential of the corresponding solutions.23 Ion uptake by ice growing from solutions of mixed electrolytes of diverse concentrations, such as those encountered in natural systems, remains a largely unexplored subject. Ammonium ions, for example, are known to enhance incorporation of a variety of anions into the ice matrix.20

Except for an isolated study,37 which employed a pH electrode to monitor the acidity of the (initially 0.1 M neutral) NaCl solution ahead of an ice front, advancing at \sim 3 μm, Bronshteyn and Chernov’s predictions have been directly tested.36 Specifically, we investigate 19F chemical shifts (or the relative pH changes) detected by a molecular \textit{in situ} probe, 3-fluorobenzoic acid, embedded in the microscopic fluid films created by the extensive freezing of dilute solutions of electrolyte mixtures of environmental relevance over a wide range of freezing conditions.

EXPERIMENTAL METHODS

Single electrolyte solutions of 5 mM and 1 M KNO$\textsubscript{3}$, NaNO$\textsubscript{2}$, NaCl, Na$_2$SO$_4$, and NH$_4$OH at 3 $<$ pH $<$ 6 were doped with an \textit{in situ} probe, 10 mM 3-fluorobenzoic acid. A specified volume (90 μl) of each solution was transferred by a 100 μl Gilson micropipette to a 4 mm diameter zirconia (ZrO$_2$ with MgO) rotor. Solutions were then sealed inside the rotor by a Kel-F cap.

NMR experiments were performed on a Bruker Avance 500 MHz spectrometer at a 5 kHz spin rate, associated with a superconducting coil, giving a magnetic field of 11.70 T (working frequency for 19F is 470.70 MHz). Using Bruker Avance 500 MHz spectrometer’s respective temperature controller, temperatures were adjusted between 200 and 298 K. A Bruker MAS probe tuned for fluorine (19F) was utilized on the rotor. All experiments conducted were single pulsed, where the $\pi/2$ pulse width was 4 μs. 19F chemical shifts were externally referenced with perfluorooctane (C$_8$F$_{18}$) in chloroform (CHCl$_3$). Spectra were registered consistently with 16 scans over \sim 90 sec. time periods. Solutions were cooled at 0.5, 1, 2, and 10 °C min$^{-1}$ and
were only heated at 1 °C min⁻¹. Note: the cooling rates and the heating rate pertain to the rates of cooling and heating between temperatures where spectra were generated.

RESULTS AND DISCUSSION

Nuclear magnetic resonance is the technique of choice used for reporting the molecular environment of solutes in solution. Rotational and translational motions have such different time scales in solids and liquids that it is possible to characterize the pore structure of ices by ¹H NMR imaging. Chemical shift gradients provide another dimension to the NMR imaging of materials, like their heterogeneity. ¹⁹F-NMR solute probes can transmit acidity changes in aqueous microenvironments based on the ¹⁹F chemical shift differentials between conjugated acids and bases. We chose to monitor acidity changes in extensively frozen solutions by means of 3-fluorobenzoic [pKₐ = 3.68, Δ(δ_F,acid – δ_F,anion = ppm)] as acidity probes. Alternatively, highly sensitive ³¹P-NMR pH probes designed for in vivo acidity studies could be used. In general, protonation and dissociation occur so rapidly in the NMR time scales that the measured chemical shift, ⟨δ_F⟩, is actually a molar average of anion and undissociated acid contributions:

\[\langle \delta_F \rangle = x\delta_{F,\text{ANION}} + (1-x)\delta_{F,\text{ACID}} \]

i.e., ⟨δ_F⟩ is a direct measure of the degree of ionization of x.

The interpretation of pH measurements at low temperatures requires some precision. While the temperature dependence of pKₐ's is weak (ΔH_diss ~ 0.5 kcal mol⁻¹), Kw is very sensitive to temperature (ΔH_diss ~ 13.52 kcal mol⁻¹). Thus the neutral point of supercooled water at -35 °C is estimated at pH 8.4. The drastic ionic strength, I, changes attending massive freezing will significantly affect dissociation equilibria. Therefore, it is problematic to define pH in partially frozen media. However, if one intends to assess the extent of dissociation of a weak acid, e.g., HONO, in frozen electrolyte solutions, most of these effects cancel out. Let us consider how ⟨δ_F⟩ measurements for a fluoroacid FAH, as a function of temperature, can be used with good approximation to estimate the degree of dissociation of nitrous acid, HONO:

\[\frac{K_N}{[NO_2^-]} = \frac{[H^+][NO_2^-]}{[HONO]} \times \frac{\gamma^-_{H^+}\gamma_{NO_2^-}}{\gamma^-_{HONO}} \]

\[\frac{K_p}{[FAH]} = \frac{[H^+][FA^-]}{[FAH]} \times \frac{\gamma^-_{H^+}\gamma_{FA^-}}{\gamma^-_{FAH}} \]

\[\langle \delta_F \rangle = \delta_{FAH} + x_{FA^-}(\delta_{FA^-} - \delta_{FAH}) \]

\[x_{FA^-} = \frac{[FA^-]}{[FA^-] + [FAH]} \]

\[\frac{[HONO]}{[NO_2^-]} = \frac{K_p}{K_N} \times \frac{\gamma^-_{NO_2^-}\gamma_{FA^-}}{\gamma^-_{HONO}\gamma_{FA^-}} \times \left[\frac{\delta_{FA^-} - \delta_{FAH}}{\langle \delta_F \rangle - \delta_{FAH}} \right] \]

The relationship [HONO]/[NO₂⁻] vs ⟨δ_F⟩ (Eq. 6) will be, in general, determined by the initial overall composition of the solution and T. However, the temperature dependence of the ratio of acidity constants, the first factor in the RHS of Equation 6, will be either negligible or
readily estimated from independent information. Furthermore, the second factor in the RHS of Equation 6 will be nearly independent of T and I due to a mutual cancellation of effects between the activity coefficients of the corresponding anions and undissociated acids. Considering that the chemical shifts of FAH/FA$^-$ as well as of the reference standard have very weak temperature dependences (< 0.001 ppm K$^{-1}$), we infer that Equation 6 establishes the basis for the evaluation of the extent of dissociation of weak acids in the liquida of partially frozen solutions.

The 19F NMR spectra of 10 mM 3-fluorobenzoic acid in variable concentrations (e.g., 5 mM, 0.5 M, and 1 M) of single electrolyte solutions in D$_2$O (MP = 277 K) were recorded as a function of temperature between 200 and 298 K. Using this technique, we have confirmed that acidities significantly increase or decrease upon freezing depending on the type of ions involved. For example, the apparent pH increases, overall, during all cooling rates for NaCl, KNO$_3$, and NaNO$_2$ solutions. pH values were derived from the $\langle \delta F \rangle$ vs. pH titration curve for 2-fluoroethanoic at 298 K, assuming negligible (T, I) effects. Assuming ideal solution behavior, we estimate (from the fusion enthalpy of D$_2$O) that at 270 K $x_{D_2O} = 0.934$, where [NaCl] \approx 3.9 M (i.e., \approx 98.7% of the solvent has frozen). It is known that increasing the solute concentration in an ice matrix will enhance surface and interfacial aqueous/ice premelting.

In contrast to the increase in pH during the freezing of NaCl, KNO$_3$, and NaNO$_2$ solutions, Na$_2$SO$_4$ and NH$_4$OH solutions display the opposite effect.

It is apparent that by measuring the average chemical shifts of adequate pH probes as function of temperature in solutions duplicating the overall ionic composition of ambient snow, it should be feasible to evaluate the acidity of the solutes milieu under all conditions. These phenomena are directly relevant to polar environments, where in acidic snow-covered regions, nitrite (pK$_a$ \approx 3.2) will protonate to form nitrous acid, which will in turn, be released readily as HONO$_{(g)}$ from the snowpack. Zhou et al. measured excessive levels of HONO$_{(g)}$ at Alert, Canada, where the freezing mechanism, causing a reduction in acidity of the ice medium, will be directly relevant.

REFERENCES

Figure 1: pH changes deduced from relative 19F NMR shifts, which indicate that the apparent pH increases from ~ 3.15 at 298 K to 3.65 at 270 K during freezing of NaCl solutions.

Figure 2: pH changes deduced from relative 19F NMR shifts, which indicate that the apparent pH decreases from ~ 3.25 at 298 K to 2.40 at 270 K during freezing of Na$_2$SO$_4$ solutions.