Unification in the Description Logic \mathcal{EL}

Franz Baader and Barbara Morawska

TU Dresden, Germany

UNIF 2009
UNIF 2008 Unification in \mathcal{EL} is of type zero.

UNIF 2009 Unification in \mathcal{EL} is decidable and is in NP. Unification problem in \mathcal{EL} is NP-complete.
Outline

1. Introduction
2. \mathcal{EL}-unification
3. Towards a decision procedure
 - Reductions and reduced form
 - Subsumption order and its inverse
 - Minimal Unifiers
4. Decision Procedure
 - Computing minimal unifiers
 - Complexity
5. Conclusion
Description Logic \mathcal{EL}

- Concept names: City, Cathedral,
- Top concept: \top,
- Conjunction: \sqcap,
- Existential restriction: $\exists \text{has-location}. \top$

Example (concept term)

$\text{City} \sqcap \exists \text{location. East-South of Germany} \sqcap \exists \text{university.} \top$
Description Logic \mathcal{EL}

Semantics

(Δ, \mathcal{I}) is an interpretation, where:

- Concepts are sets: if $A \in N_C$, $A^\mathcal{I} \subseteq \Delta$;
- Roles are binary relations: if $r \in N_R$, $r^\mathcal{I} \subseteq \Delta \times \Delta$;
- \top is the domain: $\top^\mathcal{I} = \Delta$;
- Conjunction is intersection: $(C \sqcap D)^\mathcal{I} = C^\mathcal{I} \cap D^\mathcal{I}$;
- $(\exists r . C)^\mathcal{I} = \{ c \in \Delta \mid \exists b \in \Delta. (c, b) \in r^\mathcal{I} \text{ and } b \in C^\mathcal{I} \}$

Subsumption and equivalence

- Subsumption:
 $C \sqsubseteq D$ iff for all interpretations $C^\mathcal{I} \subseteq D^\mathcal{I}$.
- Equivalence:
 $C \equiv D$ iff $C \sqsubseteq D$ and $D \sqsubseteq C$.
We define a set of variables N_V as a subset of N_C.

Idea: concept names in N_V may be defined differently by different users or developers of a given ontology.

Concepts from N_V can be substituted with concept terms, concepts from N_C cannot be substituted.
Example:

- City \n \n \exists\ \text{location. East-South of Germany}\n \n \exists\ \text{size. (more-than-500000 \n less-than-1000000)}

- Settlement \n \n \exists\ \text{has. Cathedral}\n \n \exists\ \text{location.Saxony}\n \n \exists\ \text{size. middle}
EL-Unification

EL-Unification Problem

is a set of equalities, $C_1 \equiv D_1, \ldots, C_n \equiv D_n$, where C_i, D_i are \mathcal{EL}-concept terms.

A substitution σ is an \mathcal{EL}-unifier (solution)

of an \mathcal{EL}-unification problem $C_1 \equiv D_1, \ldots, C_n \equiv D_n$ if $\sigma(C_1) \equiv \sigma(D_1), \ldots, \sigma(C_n) \equiv \sigma(D_n)$.

SLmO – semilattices with monotone operators

\[SLmO = \{ \begin{align*}
x \land (y \land z) &= (x \land y) \land z, \\
x \land y &= y \land z, \\
x \land x &= x, \\
x \land 1 &= x, \\
\{ f_i(x \land y) \land f_i(y) &= f_i(x \land y) \mid 1 \leq i \leq n \}
\end{align*} \]

- \(\land \) is associative, commutative and idempotent,
- \(\top \) is a unit for \(\land \)
- \(\exists r_i. (C \land D) \land \exists r_i. D \equiv \exists r_i. (C \land D) \)

Existential restriction is not a homomorphism:
\[\exists r. (A \land B) \nsubseteq \exists r. A \land \exists r. B \]
What are the unifiers of the following goal:

\[\exists R. Y \sqsubseteq X \]

For example:

- \([X \mapsto \exists R.Z_1, \ Y \mapsto Z_1]\)
- \([X \mapsto \exists R.Z_1 \sqcap \exists R.Z_2, \ Y \mapsto Z_1 \sqcap Z_2]\)
- \([X \mapsto \exists R.Z_1 \sqcap \exists R.Z_2 \sqcap \exists R.Z_3, \ Y \mapsto Z_1 \sqcap Z_2 \sqcap Z_3]\)
- \(\ldots\)
Reduction rules are applied to concept terms modulo AC

- $C \sqcap T \rightarrow C$
- $A \sqcap A \rightarrow A$
- if $D \subseteq C$, then $\exists r.D \sqcap \exists r.C \rightarrow \exists r.D$
Equivalence of reduced concepts

Theorem (Küsters)

\[C \equiv D \quad \text{iff} \quad \hat{C} = \mathcal{A}_C \hat{D} \]

where \(C \rightsquigarrow \hat{C}, \ D \rightsquigarrow \hat{D} \)
Subsumption order: $C_1 > C_2$ iff $C_1 \sqsupseteq C_2$.
Subsumption order is not well founded.

Inverse of subsumption order: $C_1 >_{is} C_2$ iff $C_1 \sqsubseteq C_2$.

Lemma

There is no infinite sequence C_0, C_1, C_2, \ldots of \mathcal{EL}-concept terms such that $C_0 \sqsubseteq C_1 \sqsubseteq C_2 \sqsubseteq \ldots$.
Monotonicity of $>_{is}$

Lemma

C is a reduced concept term and contains D,

$$D >_{is} D'$$

Then:

$$C >_{is} C'$$

where C' is obtained from C by replacing an occurrence of D by D'.

Proof

Induction on size of C.

1. $C = D$, obvious.
2. $C = \exists R.C_1$ and D occurs in C_1 (induction).
3. $C = C_1 \sqcap \cdots \sqcap C_n$ and D occurs in C_i.
Monotonicity of $>_i$s

Proof of the case where $C = C_1 \sqcap \cdots \sqcap C_n$ and D occurs in C_1.

$$C_1 \sqcap \cdots \sqcap C_n \rightsquigarrow C_1' \sqcap C_2 \sqcap \cdots \sqcap C_n$$

By induction $C_1 >_i{s} C_1'$, i.e. $C_1 \sqsubseteq C_1'$.

and by monotonicity of \sqsubseteq:

$$C_1 \sqcap \cdots \sqcap C_n \sqsubseteq C_1' \sqcap C_2 \sqcap \cdots \sqcap C_n$$

Hence

$$C_1 \sqcap \cdots \sqcap C_n \not>_i{s} C_1' \sqcap C_2 \sqcap \cdots \sqcap C_n$$

means $C_1 \sqcap \cdots \sqcap C_n \equiv C_1' \sqcap C_2 \sqcap \cdots \sqcap C_n$

$C_1 \not\equiv C_1'$, there is $i \neq 1$, such that

$$C_1 \sqsubset C_1' \equiv C_i.$$

But this means that C_1 “eats up” C_i in C, and thus C is not reduced. Contradiction.
Minimal unifiers

$>_i s$ is well-founded
its multiset extension $>_m$ is well-founded.

$S(\sigma)$ as a multiset of all $\sigma(X), X \in Var(\Gamma)$.

Definition

$\sigma > \gamma$ iff $S(\sigma) >_m S(\gamma)$.
σ, θ are ground, reduced unifiers of Γ.

The ground, reduced unifier σ of Γ is **minimal** iff there is no unifer θ, such that $\sigma > \theta$.

Obviously, a goal is unifiable iff it has a minimal ground reduced unifier.
Atoms and flat goals

A concept term is an atom iff it is a constant or of form $\exists r. C$.

A flat atom is an atom which is a constant or $\exists r. C$, where C is constant, variable or \top.

A goal Γ is flat iff it only contains the equations of the form:

- $X \equiv ? C$ with X a variable and C a non-variable flat atom,
- $X_1 \sqcap \ldots \sqcap X_m \equiv ? Y_1 \sqcap \ldots \sqcap Y_n$, where $X_1, \ldots, X_m, Y_1, \ldots, Y_n$ are variables.
Atoms of a unifier σ

$$At(\sigma) = \bigcup_{X \in \text{Var}(\Gamma)} At(\sigma(X))$$

Definition

For every concept term C, define $At(C)$:

- if $C = \top$, then $At(C) = \emptyset$,
- if C is a constant, then $At(C) = \{C\}$,
- if $C = \exists r.D$, then $At(C) = \{C\} \cup At(D)$,
- if $C = D_1 \cap D_2$, then $At(C) = At(D_1) \cup At(D_2)$.
Locality of a minimal ground reduced unifier

\(\gamma \) is a minimal reduced ground unifier of \(\Gamma \)

Lemma

*If \(C \) is an atom of \(\gamma \),
then there is a non-variable atom \(D \) in \(\Gamma \),
such that \(C \equiv \gamma(D) \)*

Proof by contradiction.

Idea: If \(C \) is maximal w. r. t. \(\sqsubseteq \) and violates the lemma, we construct a smaller unifier \(\gamma' \) – contradiction.

- \(C \) is a constant \(A \).
- \(C \) is of the form \(\exists r.C_1 \).
Proof of the case where C is of the form $\exists r . C_1$

D_1, \ldots, D_n are all atoms in Γ, such that

$C \sqsubseteq \gamma(D_1), \ldots, C \sqsubseteq \gamma(D_n)$.

$C \sqsubseteq \gamma(D_1) \sqcap \cdots \sqcap \gamma(D_n)$.

Obtain γ' by replacing C with reduced form of $\gamma(D_1) \sqcap \cdots \sqcap \gamma(D_n)$.

Check if γ' is also a unifier of Γ

- $X \equiv? E$,
- $X_1 \sqcap \cdots \sqcap X_m \equiv? Y_1 \sqcap \cdots \sqcap Y_n$,

Γ
\(\gamma(X_1) \sqcap \cdots \sqcap \gamma(X_m) \equiv \gamma(Y_1) \sqcap \cdots \sqcap \gamma(Y_n) \)
\(\gamma(X_1) \sqcap \cdots \sqcap \gamma(X_m) \leadsto [U]_{AC} \iff \gamma(Y_1) \sqcap \cdots \sqcap \gamma(Y_n) \)

We show that all these reductions are preserved if \(C \) is replaced by reduced \(\gamma(D_1) \sqcap \cdots \sqcap \gamma(D_n) \).

The most interesting reduction is:

\[\exists r. E_1 \sqcap \exists r. E_2 \leadsto \exists r. E_1 \]

if \(E_1 \sqsubseteq E_2 \)

Assume that \(C \) is in \(E_1 \) and there is \(C' \) in \(E_2 \), such that \(C \sqsubseteq C' \).

- \(C = C' \), (easy, both are replaced by \(\gamma(D_1) \sqcap \cdots \sqcap \gamma(D_n) \)),
- \(C \sqsubseteq C' \)

In the second case \(C' = \top \) or \(C' \) is \(\gamma(D_i) \), and \(\gamma(D_1) \sqcap \cdots \sqcap \gamma(D_n) \sqsubseteq C' \).
Corollary

\(\Gamma\) – a flat goal
\(\gamma\) – minimal reduced ground unifier of \(\Gamma\)
\(X \in \text{Var}(\Gamma)\)

Then \(\gamma(X) = \top\) or there are non-variable atoms \(D_1, \ldots, D_n\) \((n \geq 1)\) of \(\Gamma\) such that \(\gamma(X) \equiv \gamma(D_1) \sqcap \cdots \sqcap \gamma(D_n)\).
Algorithm

1. For each X in Γ guess a set S_X of non-variable atoms in Γ.
2. Define: X depends on Y if Y occurs in S_X.
 Fail if there are circular dependencies in the transitive closure of depends.
3. Define a substitution
 - If S_X is empty, then $\sigma(X) = T$,
 - otherwise, $S_X = \{D_1, \ldots, D_n\}$ and
 $\sigma(X) = \sigma(D_1) \cap \cdots \cap \sigma(D_n)$.
4. Check if σ is a unifier of Γ.
Theorem

\mathcal{EL}-unification is NP-complete.

Proof.

The problem is NP-hard, because \mathcal{EL}-matching is NP-hard.

Consider the algorithm:

Present the substitution σ as a sequence of equations, a TBox T_σ. (Hence the definition of σ is polynomial)

For each $C \equiv ? D \in \Gamma$, $\sigma(C) \equiv \sigma(D)$ iff $C \equiv_{T_\sigma} D$.

In \mathcal{EL} subsumption (and thus equivalence) modulo acyclic TBoxes is polynomial.

(What is a minimal unifier of the "type-zero" problem?)
Conclusion

We have shown

Unification in \mathcal{EL} is NP-complete.

What next?

- Implementation...
- Unification in \mathcal{EL} but without T...
- Unification in extensions of \mathcal{EL}, e.g. $\forall r. C$.